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Abstract  

The present work aims at comparing the performance of three multidimensional Item Response Theory (IRT) 

models when applied to the INVALSI data. Such models are extensions of the classical unidimensional IRT 

models, since they assume that the response process to the test items depends on several, potentially correlated, 

latent traits (rather than on a unique latent trait), in addition to the specific item characteristics. Among 

multidimensional models, further issues concern the possibility that each item contributes to measure only a 

latent trait (between-item multidimensionality), in contrast to the within-item multidimensionality, in which 

more latent traits can simultaneously affect the item response. In this study, we consider INVALSI data on the 

mathematics test administrated in 2016 to students at lower secondary school level (Grade 8). Three 

multidimensional IRT models are applied. In particular, within a between-item multidimensionality context, 

we consider the Multidimensional Item Response Theory model – assuming a continuous distribution of the 

latent trait – and the Multidimensional Latent Class IRT model, in which the latent trait distribution is 

hypothesised to be discrete. In the context of within-item dimensionality, instead, the two-tier Latent Class 

IRT model is considered, in which we suppose the existence of two underlying multidimensional, but 

uncorrelated, latent traits, both having a discrete distribution. First results show that the two-tier Latent Class 

IRT is the model that best fits the INVALSI data at hand.  
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1. Introduction  

Students’ proficiency (e.g., mathematical ability), like many psychological attributes, is latent by nature, since 

it is impossible to have a direct manifestation of it. For this reason, the response pattern provided by some 

students to a set of specific test items may be employed to infer such an unobservable construct. In fact, since 

there are no ways to directly measure it, the degree to which a certain latent ability characterises a student can 

be uniquely inferred from overt behaviours, representing the construct observable manifestation (Bartolucci 

et al., 2015).  

 Standardised tests can be employed as measurement tool of students’ abilities, since the response pattern can 

be considered as a direct manifestation of the respondents’ proficiency. Such tests are characterised by i. 

homogeneity of respondents’ working conditions (same test items and same available time) and ii. objectivity, 

that is, test correction is accomplished according to a prespecified protocol, so that the correction is 

independent by the person who carries out it (INVALSI, 2016b). As such, the tests administrated by the Italian 

National Institute for the Evaluation of the Education System (INVALSI) are typical cases of standardised 

test. These tests (on Italian, grammar and mathematics) are annually administrated to school students, with a 

different content according to the school level the students belong to: grade 2 and 5 (primary school), grade 8 

(lower secondary school) and grade 10 (upper-secondary school).   

In order to measure students’ achievement, standardised test content design and specification have to 

be founded on the national curriculum documents, the national legislation, and expectations for students’ 

learning. They are communication tools to the entire education community (i.e., teachers, students, the public) 

about the broad evaluation objectives, i.e., what students are supposed to know and to do within a content area 

and a process at specific points during their formal education (Webb, 2006). For this purpose, there should be 

an alignment between the items of a test and the national framework requirements; moreover, the items should 

cover a broad range of competencies to give students fair opportunity to show their abilities (Tout and Spithill, 

2014).  The INVALSI test objectives are defined and detailed in the Quadro Teorico di Riferimento  

(INVALSI, 2017), together with the Indicazioni nazionali per il curricolo della scuola dell’infanzia e del 

primo ciclo di istruzione. These documents define the conceptual key points that are fundamental to build the 

test, the characteristics in terms of cognitive processes requested for solving the tasks and the operational 

criteria to be used in the test building process along the four school levels (INVALSI, 2016b).   

 In this paper, the attention is paid on the INVALSI mathematics tests. Mathematical ability is a very complex 

and multifaceted phenomenon; in fact, when responding to a set of specific items, different but potentially 

related sub-abilities are involved.  
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In this regard, some recent developments (Bartolini Bussi et al. 1999; Douek 2006; Gnaldi, 2016, Gnaldi and 

Del Sarto, 2016) investigate the complex structure of ability in mathematics, highlighting that it cannot be 

considered a simple and unique construct (i.e., unidimensional), as it engages several content domains and 

processes at different levels. In other terms, mathematics ability is a multidimensional construct.   

Several assessment tools can be employed to investigate the structure of multidimensionality of a test. 

They can be divided into two main groups: confirmatory and exploratory. The former may be carried out when 

one knows a priori the multidimensional structure of a test, that is, the groups of items that contribute to 

measure the specific dimensions are known in advance. Alternatively, exploratory methods can be used when 

no prior information is available for the test structure. Both can be used for ascertaining the number of 

dimensions measured by a test and the clusters of items contributing to measure them.   

 As reported in the technical report (INVALSI, 2016b), the statistical methodology considered by INVALSI 

to assess the uni/multidimensionality of the data collected within its national survey is the Underlying Variable 

Approach (UVA; Moustaki, 2000), using the MPLUS software (Muthén and Muthén, 2010). This method 

assumes that observed variables (i.e., the dichotomous responses to test items) are partial realisations of 

continuous latent variables with Normal distribution, and it is appropriate for the context at issue as the 

INVALSI data consist in a data matrix of dichotomous variables (i.e., the wrong/correct responses of students 

to the test items). In the UVA, the tetrachoric correlation is considered to estimate the association between 

underlying continuous variables. Besides, in order to evaluate the structure of dimensionality of the data, a 

multi-criteria approach is followed, according to indexes of model goodness-of-fit (Chi-Squared test, Root 

Mean Square Error of Approximation, Standardized Root Mean Square Residual) and other typical measures 

of Factor Analysis (ratio between the first two eigenvalues, eigenvalues scree test, range of the factorial 

saturations). Our proposal, which can be considered as a further methodological possibility to the current 

INVALSI approach for dimensionality assessment, is entirely based on Item Response Theory (IRT) models. 

Such models are very suitable statistical tools to infer a psychological construct, starting from a test response 

data matrix. IRT models assume that the response process to a set of items depends on i. some item features 

(e.g., difficulty, discrimination) and ii. the personal characteristics of the respondent, generally called “latent 

ability” or “latent trait”, since it cannot be directly observed. Classical IRT models assume unidimensionality, 

that is, the latent ability underlying the test response process is unique and can be statistically represented by 

a univariate latent variable. However, a test – like the INVALSI one – is often composed by subsets of items 

measuring different but potentially related sub-constructs of the main study object. For this kind of tests, 

Multidimensional IRT models (Reckase, 2009) are very useful, since they take into account that the underlying  
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latent ability, which influences the response process, is made of several dimensions: this translates in the 

presence of a multivariate latent variable in the model specification.  

 The specific purpose of this paper is to compare three multidimensional IRT models applying them to the 

INVALSI mathematics test data, in order to understand which of them best fits the data at issue.  In particular, 

to investigate the potential multidimensional nature of the INVALSI mathematics test, we adopt a 

confirmatory approach. For this purpose, we exploit some prespecified item classifications made within the 

same INVALSI as possible multidimensional setting. In fact, as specified in the Quadro Teorico di 

Riferimento (INVALSI, 2017), the INVALSI mathematics test is built considering two main types of item 

classifications, one based on the item contents, divided in four groups and the other referred to seven/eight 

cognitive processes involved when responding to the questions. Moreover, another item classification recently 

introduced refers to the goal of the National Indications, which groups the items in three main dimensions.  

The three IRT models compared in this study are the Multidimensional IRT (MIRT) model (Reckase, 

2009), in which a Normal distribution is supposed for the underlying latent variable, the Latent Class (LC) 

MIRT (Bartolucci, 2007), which is a discrete version of the first model, and the two-tier LC MIRT (Bacci and 

Bartolucci, 2016), in which the response process is influenced by two (multidimensional) latent variables. This 

latter model allows for the so-called “within-item multidimensionality”, that is, the possibility that an item 

contributes to simultaneously measure two dimensions, in contrast to the “between-item multidimensionality”, 

which assumes that the response to an item is affected by only one latent trait. This paper is organised as 

follows: Section 2 briefly describes the data considered in this work, that is, the INVALSI mathematics test 

administrated in 2016. In Section 3 the statistical methodologies are described, while the results of our analysis 

are shown in Section 4. Finally, Section 5 ends with some concluding remarks.   

  

2. The INVALSI mathematics test data  

The data we deal with in this paper refer to the INVALSI mathematics test administrated in June 2016 to 

students of lower secondary school (grade 8). In particular, only the data collected in the so-called “sample 

classes” are considered: within such classes, the test is administrated in the presence of an external supervisor, 

whose main tasks are the monitoring of the test administration to ensure the respect of the procedures and to 

report the students’ responses on specific electronic forms made available by INVALSI (INVALSI, 2016a). 

These data consist in the response pattern provided by 27,955 students to the 43 multiple-choice items making 

up the test, for which the wrong/correct response is coded with 0 and 1, respectively.   

INVALSI develops the mathematics test according to two different schemes, one tied with the 

mathematical contents and the other referred to the processes used by the students when responding to the  
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question. As far as the first scheme is concerned, the test items are classified in four contents, according 

to the Italian Quadro Teorico di Riferimento for mathematics education of the first cycle of instruction 

(INVALSI, 2017): Numbers (NU), Shapes and Figures (SF), Relations and Functions (RF), and Data and 

Previsions (DP). Moreover, the second scheme classifies the questions into seven cognitive processes, as 

follows:  

1. knowledge and mastery of specific mathematics contents;   

2. knowledge and use of algorithms and procedures;   

3. knowledge of the different representation forms and ability to move from one representation to 

another;   

4. solving problems using various strategies in different fields;  

5. gradually acquiring typical forms of mathematics reasoning;  

6. using mathematical instruments, models and representations to deal with quantitative information in 

the scientific, technological, economic and social fields;  

7. recognising shapes and figures in a space and using them to solve geometric and modelling problems.  

Furthermore, another possible classification of the test items is according to the goals for the proficiency 

development, in line with the National Indications of the first cycle of instruction. Each item is connected with 

a goal of the National Indications, and, in turn, such goals are aggregated in three dimensions: Understanding 

(UND), Problem Solving (PS), and Reasoning (REAS). A description of the 43 items is provided in Table 1, 

along with the observed proportion of correct response for each item.  

  

3. Statistical methods  

Item Response Theory (IRT) models are broadly used statistical methods to infer the response pattern to a 

questionnaire/assessment test. In particular, as already outlined in Section 1, in contrast with the classic test 

theory, such models assume that the response process to a set of items depends on i. some item features (e.g., 

difficulty, discrimination) and ii. the personal characteristics of the respondent, generally called “latent ability” 

or “latent trait”, since it cannot be directly observed. In fact, if the interest is to infer some psychological 

characteristics of people (for example, the mathematics ability, a service satisfaction, a health status, etc.), 

since such phenomena are unobservable by nature, it is important to deal with an observable manifestation of 

them, such as the responses to a set of test items in mathematics, or to a questionnaire investigating a service 

satisfaction or a health status.   

 Classic IRT models assume unidimensionality, that is, the latent variable representing the underlying person 

ability, say U, is univariate with a specific distribution (e.g., Normal). Moreover, most unidimensional IRT  
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(UIRT) models hypothesise that the probability of a correct response to a test item increases as U increases 

(monotonicity assumption). Another important assumption of such models is the local independence, that is, 

the responses are conditionally independent given the level of ability U.   

 Several UIRT models have been proposed, which differ in the functional form connecting the response 

process to the item and person’s characteristics. In this paper, we focus on the two parameter logistic (2-PL) 

parametrisation for the conditional response probability (i.e., the probability of a correct response given the 

ability level), in which two item parameters are assumed to affect the above mentioned probability of response, 

that is, the difficulty parameter and the discrimination parameter.  

 In many contexts, and especially in the educational context, the unidimensional assumption does not fit the 

realty of the data at hand, since psychological and educational attributes are complex, multifaceted and present 

several aspects: for these reasons, such latent constructs cannot be correctly represented through a single latent 

variable. Similarly, mathematical proficiency investigated by the INVALSI test considered in the present 

paper is a multifaceted unobservable construct, which involves several content domains and processes at 

different levels (Bartolini Bussi et al. 1999; Douek 2006; Gnaldi, 2016, Gnaldi and Del Sarto, 2016).  

 Given the above, multidimensional IRT models (MIRT) have been proposed: the main change with respect 

to the UIRT is that now the underlying latent trait is composed by D dimensions, then represented by a D-

dimensional random vector U (instead of the single random variable U) with a multivariate distribution. In 

particular, in this paper we consider three classes of MIRT:  

• the multidimensional IRT model (Reckase, 2009), in which a multivariate Normal distribution is 

assumed for U (N-MIRT);   

• the Latent Class multidimensional IRT model (Bartolucci, 2007), in which U has a discrete distribution 

(LC-MIRT);  

• the two-tier Latent Class multidimensional IRT model (Bacci and Bartolucci, 2016), in which the 

response process depends on two uncorrelated and multidimensional random variables (2T LC-MIRT).  

These models are briefly described in the following of this section, when they are applied to the case of 

dichotomously-scored items, that is, items in which the response can be correct or incorrect.   

Let us assume that the response variable of person i = 1, …, n to item j = 1, …, J, is denoted by Yij, 

with possible values equal to 0 or 1 for wrong or correct response, respectively. The N-MIRT model represents 

the conditional probability of a correct response as follows, given that subject i has ui as ability level:  
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          (1)  
  

where dj is the item intercept, ajl is the item slope – which measures the item discrimination – with respect to 

dimension l, and ui is the latent trait vector with elements uil, l = 1, …, D and a D-variate Normal distribution. 

In Equation (1), the general 2-PL parameterisation is considered, which implies that different item slopes are 

admissible for every dimension l = 1, …, D. It follows that a generic item j can potentially load on all the D 

different dimensions of U and this, in turn, means that the item response can be affected by more than one 

dimension (within-item dimensionality). However, in this study we consider the N-MIRT model in such a way 

that each item can load on only one pre-specified dimension (between-item dimensionality), hence the ajl’s are 

constrained to be non-zero only in correspondence of the dimension that it contributes to measure, and 0 

otherwise. Furthermore, the item intercept can be interpreted as the item difficulty, employed in the following 

models. In fact, the item difficulty can be obtained by Equation (1), dividing the intercept of opposite sign by 

the (unique item) slope (discrimination).  

 The LC-MIRT differs with respect to the above model in the distribution of the latent trait and has a slightly 

different parameterisation (difficulty/discrimination, rather than intercept/slope). In fact, it is supposed that 

the latent vector of abilities has a multivariate discrete distribution with k support points, u1, …, uk, and mass 

probabilities 1, …, k. The support points identify classes of individuals (i.e., subgroups) that are 

homogeneous with respect to the latent trait: the generic element ucl represents the ability level of individuals 

who belong to class c with respect to dimension l, c = 1, …, k and l = 1, …, D. Then, each uc is again a D-

dimensional vector. The LCMIRT is based on the following equation, representing the conditional probability 

of a correct response, given that subject i belongs to latent class c, thus, with a level of ability represented by 

the vector uc:  

  

        (2)  
  

where j is the discrimination power of item j and j represents its difficulty level. Moreover, jl is an indicator 

variable, equal to 1 if item j contributes to measure dimension l, and 0 otherwise, l = 1,  

…, D.   

 Finally, the 2T LC-MIRT is an extension of the above model, in which two latent variables, say U and V, 

affect the item response process. Specifically, such latent variables are supposed to be both multidimensional 

with dimension DV and DU, respectively, but they are uncorrelated. In the two-tier model, it is possible that an  
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item simultaneously loads on a dimension of U and a dimension of V, but not on two dimensions of the same 

latent variable. Moreover, U and V have a discrete distribution with kU and kV support points, each having 

specific mass probabilities. Like in the LC-MIRT model, these support points identify subgroups of 

individuals with similar characteristics in terms of latent traits represented by U and V. Poorly speaking, these 

two latent variables represent two multidimensional but uncorrelated abilities and are referred to the same 

latent phenomenon (e.g., mathematical proficiency).  

  The 2T LC-MIRT assumes that, for cU = 1, …, kU and cV = 1, …, kV:  

  

  
  

where 𝛿𝛿𝑗𝑗𝑙𝑙𝑈𝑈 and 𝛿𝛿𝑗𝑗𝑙𝑙𝑉𝑉 are again indicator variables, equal to 1 if item j loads on dimension lU or lV, respectively, 

lU = 1, …, DU and lV = 1, …, DV. The item difficulty level is again represented by the parameter j, while here 

we have two discrimination parameters, denoted by Uj and Vj, since each item response can be affected by 

both U and V.  

 The three above methods have similar estimation methods, based on the maximisation of the model log-

likelihood. However, a detailed description of such procedures is out of the scope of this work: the reader can 

refer to the original papers for further details on the models at issue.  

  

4. Results  

As outlined above, a confirmatory approach is adopted to the INVALSI data described in Section 2 to 

understand which multidimensional model, among those described in the previous section, better fits the data 

at issue. All the analyses reported in this paper are obtained through specific packages within the R 

environment (R Core Team, 2017). Specifically, the N-MIRT model is run through the  

‘mirt’ package (Chalmers, 2012), while the ‘MultiLCIRT’ (Bartolucci, 2014) and the ‘MLCIRTwithin’ 

(Bacci and Bartolucci, 2016) packages are used for the LC-MIRT and the 2T LC-MIRT, respectively.   

In order to choose “the best” model, Information Criteria are employed. In particular, in this paper we 

consider two widely-known Information Criteria, that is, the Bayesian Information Criteria (BIC; Schwartz, 

1978) and the Akaike Information Criteria (AIC; Akaike, 1973). As it is well known, the best model is that 

showing the minimum Information Criterion.  

The analysis reported in this paper is performed through three steps:  
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1. a comparison between two possible parameterisations (1-PL vs. 2-PL), under the unidimensional 

assumption, within the MIRT setting;  

2. the assessment of the dimensional structure of the INVALSI test, using the best parameterisation 

chosen at the previous step, within the MIRT setting; among several multidimensional structures 

hypothesised for the data at issue, we aim at choosing the one that best fits the data;  

3. a comparison among multidimensional models accounting for between-item multidimensionality 

(i.e., each item contributes to measure only a latent trait), and for within-item multidimensionality 

(i.e., more latent traits can simultaneously affect the item response).  

 

The first step is conducted to assess which type of parameterisation is preferable for the INVALSI data, that 

is, the two-parameter logistic (2-PL) parameterisation in contrast to the one-parameter logistic (1-PL) one, 

also known as Rasch model (Rasch, 1961), in which all the items are supposed to equally discriminate. To 

this aim, the analysis is performed using either the Normal Unidimensional IRT model (N-UIRT) and its 

Latent Class version (LC-UIRT), that is, the unidimensional version of the N-MIRT and the LC-MIRT, 

respectively. Besides, the latter model needs to specify in advance the number of latent classes k, that is, the 

number of groups in which the students can be partitioned according to mathematical ability. Such decision 

can be made according to statistical methods (comparing models with different values of k and selecting the 

best one), or using subjective criteria, based, for example, on previous knowledge or research on the study 

object. In this paper, we use a statistical criterion (through the BIC and the AIC) to select the number of latent 

classes: thus, the LC-MIRT model is run for increasing values of k (up to 7) and the best one is chosen 

according to the BIC and the AIC. We remind that k represents the groups of ability in which the students may 

be clustered: for example, if we consider k = 3, we suppose that students may be grouped in three classes of 

ability, which might be labelled, for example, as “low”, “medium” and “high” ability students. Finally, the 

decision to not consider beyond 7 groups depends on the fact that the INVALSI test is part of the final exam 

of Italian lower secondary school students. Since the Italian school marking system is expressed in tenth, the 

INVALSI test results for each student must be successively converted in a vote expressed in tenth, from 4 to 

10: in this way, we have 7 different final grades, hence a maximum of 7 groups of students.  

The results for the choice of the type of parameterisation (1-PL vs. 2-PL) is reported in Table 2. Here, 

the BIC and the AIC are shown for the unidimensional version of the LC-MIRT model, estimated on the data 

at issue for increasing values of k and using the two types of parameterisation. In the last row, the BIC and the 

AIC of the unidimensional N-MIRT model are also reported. As we can observe, looking at the LC-MIRT, 

the 2-PL parameterisation is preferable with respect to the 1-PL, since the models using two item parameters  
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exhibit substantially lower BIC (or AIC) than 1-PL models, regardless of the number of latent classes. 

This behaviour is also confirmed using the N-MIRT. The next step of the analysis is devoted to evaluate the 

dimensional structure of the data. Now, the interest is to investigate if the latent construct to measure – i.e., 

the mathematics proficiency of Italian students – can be considered unidimensional or multidimensional, given 

the observed data. To this end, three possible multidimensional schemes are considered, obtained specifying 

three possible item aggregations according to Table 1. Specifically, in the first multidimensional scheme, the 

number of dimensions is chosen on account of the item content, so a four dimensional structure is employed 

(Numbers, Shapes and Figures, Relations and Functions, and Data and Previsions), labelled as CONT. The 

second one considers the processes listed in Section 2, so a 7-dimensional structure is specified (labelled as 

PROC). The last structure is built assuming three dimensions corresponding to the three goal-tied dimensions 

(Understanding, Problem Solving, and Reasoning), labelled as GOAL. All the previous multidimensional 

structures are specified using the between-item multidimensionality assumption, so each item response is 

supposed to be affected by a unique dimension. Results of this step of the analysis are reported in Table 3a, 

which shows the BIC (top panel) and the AIC (bottom panel) obtained for these three multidimensional 

structures, under the LC-MIRT and the N-MIRT settings. Moreover, such table also reports the BIC and the 

AIC of the unidimensional models, labelled as UNI (just reported in Table 1), for a quick comparison.   

The first important result to comment on is about the main question of this research, that is, if 

mathematical ability, measured by the data at issue, can be considered unidimensional or multidimensional. 

To this aim, we compare the BIC (and the AIC) of a unidimensional model with respect to its multidimensional 

version. As far as the N-MIRT is concerned, we can observe that the BIC (and the AIC as well) of the UNI 

model is greater with respect to each multidimensional model: this is a first evidence that the construct 

analysed here can be considered multidimensional. Besides, among the three multidimensional schemes 

mentioned above, the best is the one which considers item contents (BIC = 1,359,439; AIC = 1,358,681), then 

a 4-dimensional structure for our data.   

This result is confirmed by the LC-MIRT model. As specified before, it requires the specification of 

the number of latent classes k, so each multidimensional model is run for increasing values of k (up to 7). The 

LC-MIRT results of Table 3a firstly reveal that the multidimensional setting is again preferable with respect 

to the unidimensional one, since, for each value of k, the unidimensional model has worse performance (i.e., 

larger BIC or AIC) than its multidimensional counterpart. Moreover, as far as the number of latent classes k 

is concerned, we can observe that the best model (i.e., the one with the minimum BIC or AIC) is obtained in 

correspondence of k = 7, for  
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all the three hypothesised dimensional schemes (CONT, PROC and GOAL). In addition, among the 

three models with seven latent classes, the best one according to the BIC is again the CONT model, that is, 

the model whose multidimensional structure is specified according to the item content (BIC = 1,361,226). 

However, if we look at the AIC (bottom of Table 3a), the best scheme is that referring to the cognitive process 

(PROC model, AIC = 1,360,238).   

The last step of the present study is carried out to compare the models selected at the previous step – 

that is, IRT models with a single multidimensional latent variable – and the 2T LCMIRT. We recall that the 

latter considers two uncorrelated multidimensional latent variables U and V: since their distribution is 

supposed to be discrete, this, in turn, requires the specification of the number of latent classes for each latent 

variable (kU and kV). Given the results obtained in the previous step, we chose to use kU = kV = 7. Moreover, 

since we are dealing with three possible item classifications (according to the item contents, processes and 

goal-dimensions), we consider all the possible 2T LC-MIRT models, built on the basis of the possible 

combinations of the above item classifications: i. CONT + PROC, ii. CONT + GOAL and iii. PROC + GOAL. 

For example, in the CONT + PROC model, the first latent variable U is multidimensional with four dimensions 

according to the item contents, while V is multidimensional with seven dimensions on the basis of the item 

processes. Again, in order to choose the suitable multidimensional classification, the three 2T LC-MIRT 

models are compared according to their BIC and AIC, reported in Table 3b. As we can see, the best two-tier 

model is the CONT + PROC one (BIC = 1,338,228; AIC = 1,336,588). Moreover, comparing the BIC (and 

the AIC) with the best LC-MIRT or N-MIRT obtained in the previous step – that is, models with a 

multidimensional structure made by only one latent variable –  we can see that the two-tier model is preferable 

according to both Information Criteria, since we can observe lower values of both indexes for the 2T LC-

MIRT than the LC-MIRT or N-MIRT ones.   

  

5. Conclusions  

The present work aims at comparing the goodness of fit of three multidimensional IRT models to the INVALSI 

data: the multidimensional IRT model (Reckase, 2009), the Latent Class multidimensional IRT model 

(Bartolucci, 2007), and the two-tier Latent Class multidimensional IRT model (Bacci and Bartolucci, 2016). 

All the previous models assume that the responses to the test items depend on more than a single latent trait 

or ability. However, while in the first two models a unique latent trait is assumed to affect the item response 

(between-item multidimensionality), the third model is based on  
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the within-item multidimensionality assumption, which implies that more latent traits can simultaneously 

affect the item response.   

The data used in this study are the INVALSI data on the mathematics test administrated in 2016 to 

students at lower secondary school level (Grade 8). First results show that any of the three multidimensional 

models fit the data better than their unidimensional counterpart, confirming that the mathematics test is made 

of more than a single component or ability. Further, among the three multidimensional models accounted for 

in this study, the two-tier Latent Class IRT is the model that best fits the INVALSI data. This implies that, for 

the INVALSI mathematics test, it is realistic to hypothesise that each item contributes to contextually measure 

two latent abilities – rather than a single one – defined on account of both its content specifications and the 

mathematical processes involved to resolve it. It follows that the multidimensional structure of the 

mathematics test can be conveniently specified according to item content and processes, and that the adoption 

by the INVALSI of such a two-side item classification – where item contents and processes are uncorrelated 

– is expressive of the real nature of the data.    
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Tables and figures 

 
 
Table 1: Description of the 43 items composing the 2016 INVALSI mathematics test.  
  

Item Original label Content1 Process dimension Goal- 2 Prop. of correct  

1 D1  NUM  3  UND  0.625  
2 D2_a  NUM  7  PS  0.804  
3 D2_b  DP  4  PS  0.592  
4 D3_a  SF  8  UND  0.523  
5 D3_b  SF  8  UND  0.537  
6 D4_a  RF  7  UND  0.746  
7 D4_b  RF  7  UND  0.721  
8 D5_a  NUM  4  PS  0.435  
9 D5_b  NUM  4  PS  0.349  
10 D6  SF  6  REAS  0.237  
11 D7_a  DP  7  PS  0.583  
12 D7_b  DP  7  PS  0.487  
13 D7_c  DP  7  PS  0.283  
14 D8  SF  4  PS  0.281  
15 D9_a  SF  1  UND  0.595  
16 D9_b  RF  4  PS  0.775  
17 D9_c  RF  4  PS  0.620  
18 D10  DP  7  PS  0.483  
19 D11_a  RF  4  PS  0.554  
20 D11_b  RF  4  PS  0.485  
21 D12  DP  2  PS  0.541  
22 D13_a  DP  7  PS  0.841  
23 D13_b  NUM  1  UND  0.374  
24 D14  SF  1  UND  0.345  
25 D15  NUM  6  REAS  0.371  
26 D16  DP  7  PS  0.807  
27 D17  SF  2  UND  0.436  
28 D18  DP  2  PS  0.417  
29 D19  SF  8  UND  0.433  
30 D20  NUM  4  PS  0.660  
31 D21  DP  3  PS  0.831  
32 D22  SF  8  UND  0.487  

 

                                                 
1 NU: Numbers; SF: Shapes and Figures; RF: Relations and Functions; DP: Data and Previsions  
2 UND: Understanding; PS: Problem Solving; REAS: Reasoning  
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33 D23_a  RF  6  REAS  0.357  
34 D23_b  RF  4  PS  0.640  
35 D24  NUM  2  UND  0.411  
36 D25  RF  3  UND  0.494  
37 D26_a  RF  2  UND  0.498  
38 D26_b  RF  6  PS  0.568  
39 D26_c  RF  6  PS  0.525  
40 D27  NUM  3  UND  0.512  
41 D28  NUM  2  UND  0.472  
42 D29  NUM  1  UND  0.639  
43 D30  DP  1  UND  0.367  
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1,386,484   1,372,288     1,386,097   1,371,554   

 
 
Table 2: Results about the comparison of the parameterisations considered for the unidimensional IRT models 
(UIRT).   
  
LC-UIRT  BIC    AIC  
 k  1-PL  2-PL    1-PL  2-PL  

3  
5  1,378,916  1,362,991    1,378,496 1,362,225  
7  1,378,592  1,362,467    

  
1,378,139 1,361,668  

N-UIRT  1,378,758  1,362,681    1,378,395 1,361,972  
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3   5   7   
1,372,145   1,362,805   1,361,226   

3   5   7   
1,371,387   1,361,965   1,360,303   

 
Table 3: a) Comparison between unidimensional solution (UNI) and multidimensional ones, according to the 
item contents (CONT), involved processes (PROC) and goal-tied dimensions (GOAL); b) two-tier LC MIRT 
performance.   
  
a)  

 
 LC-MIRT (k)    
 BIC  N-MIRT  

CONT    1,359,439  
PROC  1,372,209  1,362,881  1,361,285    1,359,571  
GOAL  1,372,258  1,362,930  1,362,034    1,361,563  
UNI  1,372,288  1,362,991  1,362,467  1,362,681  

  

    
LC-MIRT (k)  

 AIC  N-MIRT  
  

CONT    1,358,681  
PROC  1,371,426  1,361,966  1,360,238    1,358,690  
GOAL  1,371,508  1,362,114  1,361,153    1,360,830  
UNI  1,371,554  1,362,225  1,361,668  1,361,972  

  
  

b)  
2T LC-MIRT  BIC  AIC  
CONT + GOAL  1,340,143  1,338,685  
CONT + PROC  1,338,228  1,336,588  
GOAL + PROC  1,339,560  1,337,962  
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